Editorial

Field Reports
Purschwitz
Abiotic Resources
Rollefson, Rowan, Wasse
Wisad Pools

Contribution
Becker, Helms
Tell Tawila
Dietrich, Köksal-Schmidt, Notroff, Schmidt
Göbekli Tepe

Book Review
New Publications/Masthead

NEO-LITHICS 1/13
The Newsletter of Southwest Asian Neolithic Research
Editorial

In the past decade, an accelerating number of outraging reports on looted museums and archaeological sites, churches and mosques, cemeteries and dig houses, and other monuments have come from Middle Eastern countries. And now Egypt. Of course, lamenting about this appears callous in the face of the tens of thousands of plundered private homes, rape, and murder. Often our indignation forgets that systematic (and even institutionalized) looting has been reported in many ancient Near Eastern texts, including the Old Testament, or that the western countries’ history is full of such periods, such as the sack of Constantinople by the Fourth Crusade, the looting of the Aztec gold, Napoleon’s or the Nazi / Allied Forces “removal” of cultural objects from conquered territories. Or see the Lieber Code of 1863! The topic is highly complex and old: Many of us have found evidence of systematic contemporaneous looting in Neolithic and Chalcolithic contexts. Be it the villager making pits in Tell Jokha (Umma), or the armed fighters coming with bulldozers to Apamea, their disposition to benefit from the chaos is encouraged by the greed of the wealthy “co-looters” from all around the world, be they institutions or private collectors secretly enjoying the plunder. Neolithic collections may not yet be largely in the focus of looters and co-looters, but does this protect their integrity during a looting raid?

Hans Georg K. Gebel and Gary O. Rollefson
Establishing a Radiocarbon Sequence for Göbekli Tepe. State of Research and New Data

Oliver Dietrich, Çiğdem Köksal-Schmidt, Jens Notroff, and Klaus Schmidt

The stratigraphy of Göbekli Tepe comprises three layers, an older Layer III, assigned to the PPNA, a younger Layer II, attributed to the early and middle PPNB, and a final Layer I, featuring mixed sediments derived from agricultural activities, though containing PPN materials and sporadic finds from the Middle Ages and the modern period (but with no architectural remains). Layer III has produced the well-known monumental architecture with megalithic T-shaped pillars arranged in circle-like enclosures around two taller central pillars; Layer II consists of smaller rectangular buildings often containing just two or even one smaller pillar, and sometimes none at all. The difficulties and possibilities linked to the application of radiocarbon dating at the site have already been highlighted (Dietrich 2011); as such, in the following we provide only a brief summary of the current state of research.

Radiocarbon Dating at Göbekli: the State of Research

At least for the large enclosures from Layer III it can be stated that these were intentionally backfilled at the end of their use-lives. This backfilling poses severe problems for the dating of this layer using the radiocarbon method, as organic remains from the fill-sediments could be older or younger than the enclosures, with younger samples becoming deposited at lower depths, thus producing an inverse stratigraphy. Another issue is the lack of carbonized organic material available for dating; only in the last campaigns have larger quantities been discovered.

Given these inherent difficulties, in a first approach the attempt was made to date the architecture directly using pedogenic carbonates. These begin to form on limestone surfaces as soon as they are buried with sediments (Pustovoytov 2002, 2006; Pustovoytov and Taubald 2003; Pustovoytov et al. 2007a, 2007b). Unfortunately, the pedogenic carbonate layers accumulate at a variable rate over long time periods, so a sample comprising a whole layer will yield only an average value. This problem can be avoided by sampling only the oldest calcium carbonate layer in a thin section: the result should be a date near the beginning of soil formation around the stone, i.e. near the time of its burial (Pustovoytov 2002). Radiocarbon data are available from both the architecture of Layers III and II (Dietrich 2011, Tab. 1). Although the observed archaeological stratigraphy is confirmed by the relative sequence of the data, absolute ages are clearly too young, with Layer III being pushed into the 9th millennium, and Layer II producing ages from the 8th or even 7th millennia calBC.

Therefore, the data fail to provide absolute chronological points of reference for architecture and strata. At most they serve as a terminus ante quem for the backfilling of the enclosures (Layer III) and the abandonment of the site (Layer II).

A far better source of organic remains for the direct dating of architectural structures is the wall plaster used in the enclosures. This wall plaster comprises loam, which also contains small amounts of organic material (Dietrich and Schmidt 2010). A sample (KIA-44149) taken from the wall plaster of Enclosure D (Area L9-68, Loc. 782.3) gives a date of 9984 ± 42 14C-BP (9745-9314 calBC at the 95.4% confidence level), thus placing the circle in the PPNA.

Concerning the fill-material from the enclosures, two approaches have been pursued, the first dedicated to the dating of animal bones and a second to ages made on charcoal. The archaeological appraisal of a recently acquired series of 20 data made on bone samples (Fig. 3) is quite complicated, as they pose some methodological problems (Dietrich 2011: 19-20, Tab. 4). At least within the group of samples chosen, collagen conservation is poor, and the carbonate-rich sediments at Göbekli Tepe may be the cause for problems with the dating of apatite fractions (cf. Zazzo and Saliège 2011).

Carbonized plant remains have been very scarce at Göbekli, thus limiting the possibilities for dating charcoal. Nevertheless, three charcoal samples (Tab. 1) are available for Enclosure A. While two samples (Hd-20025 and Hd-20036) stem from back-fill (Kromer and Schmidt 1998) and have been dated to the late 10th/earliest 9th millennium calBC, a third charcoal sample (KIA-28407) was taken from beneath a fallen fragment of a pillar. This sample has provided a date for a possible final filling event around the mid-9th millennium calBC. It is confirmed by a measurement (IGAS-2658; Tab. 1) made on humic acids from a buried humus horizon that provides a terminus ante quem for Layer II in area L9-68, dating to the late 9th/early 8th millennium calBC.

In conclusion, up to now charcoal samples have suggested that the backfilling or burial of the larger enclosures occurred some time in the late 10th and early 9th millennium calBC, while KIA-44149 from the wall plaster of Enclosure D indicates building activities in the mid-10th millennium calBC, i.e. in the early PPNA. Notwithstanding these results, no clear image emerged in regard to the contemporaneity of the enclosures.

A New Series of Data

Recent fieldwork in the main excavation area at Göbekli Tepe has focused on the excavation of deep soundings...
to reach the natural bedrock in preparation for the construction of a shelter, urgently required for the protection of the exposed Neolithic architecture. Eleven deep soundings have been excavated to the bedrock. At several locations, considerable amounts of carbonized botanical material were discovered, so far unique for excavations at Göbekli (Fig. 2). A series of more than 150 samples has been produced either on site or by flotation of the relevant soil units. To test the quality of the material for radiocarbon dating, five samples from the area of the large enclosures from Layer III were submitted for AMS-radiocarbon dating (Tab. 1, Fig. 2, 3; UGAMS-10795 to 10799). In the following, these new data, together with a further age made on collagen from an animal tooth (KIA-44701; Tab. 1, Fig. 2, 3), are presented and discussed in context with previously available absolute chronological evidence.

Enclosure D

Two deep soundings were excavated directly adjacent to the ring wall belonging to Enclosure D, with three new ages obtained from charcoal recovered from the sounding in area L9-78 (for location of samples discussed in the text, cf. Fig. 1). These samples were collected close to the bedrock, which in its interior forms the floor of this enclosure. Calibrated ages cluster between 9664 to 9311 calBC at the 95.4% confidence level (UGAMS-10795, 10796, 10799; Tab. 1, Fig. 2, 3), a time-span which is in good agreement with the earlier measurement made on clay mortar from the ring wall of Enclosure D between Pillars 41 and 42 (KIA-44149, 9984 ± 42 14C-BP, 9745-9314 calBC at the 95.4% confidence level; Tab. 1, Fig. 2, 3). Based on these data, we now have a much clearer picture of the chronological frame within which construction activities took place in the area of Enclosure D. It is only regrettable that these four data all correspond to a period with a slight plateau in the calibration curve (Fig. 2b), thus resulting in larger probability ranges. Additional excavation work is needed to clarify the exact stratigraphical correlation of the three new charcoal dates with Enclosure D.

Finally, from the fill-material of Enclosure D there is one new 14C-age made on collagen from an animal tooth found north of Pillar 33 (KIA-44701, 9800 ± 120 14C-BP, 9746-8818 calBC at the 95.4% confidence level; Tab. 1, Fig. 2, 3). Taken together with another new measurement made on charcoal extracted from the same fill (Layer III) in area L9-69 (UGAMS-10798, 9540 ± 30 14C-BP, 9127-8763 calBC at the 95.4% confidence level; Tab. 1, Fig. 2, 3) there can still be no consensus regarding the time of abandonment and burial of this enclosure. Further radiocarbon measurements will be needed to clarify this process. Indeed, the animal tooth used to produce sample KIA-44701 might even stem from the use-life of the enclosure, which as we know would have included the celebration of large feasts (Dietrich et al. 2012). This line of thought would then allow for a considerable (several hundred years) time of use of the enclosure prior to its burial sometime in the late 10th or early 9th millennium calBC (UGAMS-10798). But at the moment, a rather short life-span of the enclosure remains a possibility, too.

<table>
<thead>
<tr>
<th>Code</th>
<th>Date</th>
<th>δ13C, ‰</th>
<th>Material</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGAMS-10796</td>
<td>9990±30</td>
<td>-25.6</td>
<td>charcoal (Pistacia atlantica, Prunus amygdalus, undetermined)</td>
<td>Enclosure D space adjacent to ring walls</td>
</tr>
<tr>
<td>UGAMS-10795</td>
<td>9970±30</td>
<td>-24.8</td>
<td>charcoal (Pistacia atlantica, Prunus amygdalus, undetermined)</td>
<td>Enclosure D space adjacent to ring walls</td>
</tr>
<tr>
<td>UGAMS-10799</td>
<td>9960±30</td>
<td>-25.7</td>
<td>charcoal (Pistacia atlantica, Prunus amygdalus, Rhamnus sp., undetermined)</td>
<td>Enclosure D space adjacent to ring walls</td>
</tr>
<tr>
<td>KIA- 44149</td>
<td>9984±42</td>
<td>-26.31 ± 0.57</td>
<td>wall plaster, organic remains</td>
<td>Enclosure D L9-68, Loc. 78.3 inner ring wall between pillars 41 and 42</td>
</tr>
<tr>
<td>KIA- 44701</td>
<td>9800±120</td>
<td>-20.57 ± 0.13</td>
<td>collagen from cattle tooth</td>
<td>Enclosure D L9-67, Loc. 65.2, north of pillar 33</td>
</tr>
<tr>
<td>UGAMS-10798</td>
<td>9540±30</td>
<td>-25.4</td>
<td>charcoal (Pistacia atlantica, Populus / Salix, undetermined)</td>
<td>Layer III, north of Enclosure D L9-69, Loc. 123.3</td>
</tr>
<tr>
<td>UGAMS-10797</td>
<td>9700±30</td>
<td>-26.7</td>
<td>charcoal (Pistacia atlantica; fragments of branches)</td>
<td>Enclosure C L9-97, Loc. 64.2 space between outer ring walls</td>
</tr>
<tr>
<td>Hdi-20036</td>
<td>9559±53</td>
<td>not provided</td>
<td>charcoal (Pistacia sp., Amygdalus sp.)</td>
<td>Enclosure A L9-75, Loc. 48.1</td>
</tr>
<tr>
<td>Hdi-20025</td>
<td>9452±73</td>
<td>not provided</td>
<td>charcoal (Pistacia sp., Amygdalus sp.)</td>
<td>Enclosure A L9-75, Loc. 44.3</td>
</tr>
<tr>
<td>KIA-28407</td>
<td>9250±55</td>
<td>-24.82 ± 0.11</td>
<td>charcoal</td>
<td>Enclosure A under a fallen pillar fragment in L9-75, Loc. 50</td>
</tr>
<tr>
<td>IGAS- 2658</td>
<td>8880±50</td>
<td>not provided</td>
<td>humic acids from soil sample</td>
<td>Terminus ante quem for Layer II over the Filling of Enclosure D in L9-68</td>
</tr>
</tbody>
</table>

Table 1 List of radiocarbon data made on organic samples from Göbekli Tepe.
At this point reference should again be made to sample IGAS-2658 (8880 ± 60 ¹⁴C-BP, 8241-7795 calBC at the 95.4% confidence level; Tab. 1, Fig. 2, 3) taken from a humus layer in area L9-68 (Pustovoytov 2006: 707-708, Fig. 2f). This date marks the last PPN activities in this area and provides a terminus ante quem for Layer II.

Enclosure C

To present, only one date is available for Enclosure C (UGAMS-10798, 9700 ± 30 ¹⁴C-BP, 9261-9139 calBC at the 91.6% probability level; Tab. 1, Fig. 2, 3). This sample was taken from a deep sounding in area L9-97 (Loc. 64.2) between the outermost ring walls of the enclosure and close to the bedrock. This could indicate that building activities at the outer ring walls of this enclosure were underway during the backfilling of Enclosure D. However, a larger series of data and a close inspection of Enclosure C’s building history will be necessary to confirm such far-reaching conclusions.

Enclosure A

From the area of Enclosure A there are the two dates already published by Kromer and Schmidt (1998) and mentioned above (Hd-20036, 9559 ± 53 ¹⁴C-BP, 9175-8759 calBC; and Hd-20025, 9452 ± 73 ¹⁴C-BP, 9131-
Fig. 2 Charts of radiocarbon data from Göbekli Tepe.
8559 cal BC at the 95.4% confidence level; Tab. 1, Fig. 2, 3). As these charcoals came from the fill of the enclosure, these measurements most likely date its abandonment, though it certainly cannot be ruled out that older organic remains became mixed in with material used for the burial of the structure (Kromer and Schmidt 1998).

In combination with the new data, these dates may indicate that Enclosure A is generally later (or was in use for a longer period) than Enclosures C and D. From the perspective of its rather square-like ground-plan, Enclosure A could be an architectural missing link between the older circular structures of Layer III and the smaller rectangular complexes of Layer II. Good comparisons for its general layout can be found in the sub-quadratic “Terrazzo Building” in Çayönü (cell plan layer) (Schirmer 1990: 382-384) or in the “Cult Building” at Nevalı Çori (Hauptmann 1993), which also yielded T-shaped pillars of forms similar to those at Gobekli, Layer II.

KIA-28407 (9250 ± 55 14C-BP; 8617-8315 calBC at the 95.4% confidence level; Tab. 1, Fig. 2, 3) is a date made on charcoal from a soil sample extracted from beneath a rather large fragment of fallen pillar (Pustovoytov 2006: 709, Fig. 3g). Although this age could mark the time of abandonment of Enclosure A, its origin makes it difficult to determine whether it dates the burial of the enclosure at the end of its use-life, a later intentional destruction, or a moment when Enclosure A was already filled and Layer II activities led to the deposition of the pillar fragment.

Conclusion

As a preliminary conclusion, the still limited series of radiocarbon data seems to suggest that Layer III enclosures at Gobekli Tepe were not exactly con-
temporaneous. Earliest radiocarbon dates stem from Enclosure D, for which the relative sequence of construction (ca. mid-10th millennium calBC) usage, and burial (late 10th millennium calBC) are documented. The outer ring wall of Enclosure C could be younger than Enclosure D. However, more data are needed to confirm this interpretation. Finally, Enclosure A seems younger than Enclosures C and D. With only eleven radiocarbon dates, many questions remain. It is hoped that the recent discovery of larger amounts of carbonized material at Göbekli Tepe will soon provide us with further dates and a much firmer grasp on the absolute chronology of this unique site.

Acknowledgements: We thank Lee Clare for language corrections and comments on the text.

Oliver Dietrich
oliver.dietrich@dainst.de (corresponding author)

Çiğdem Köksal-Schmidt
Jens Notroff
Klaus Schmidt
German Archaeological Insitute
Orient-Department

References

Dietrich O.

Dietrich O. and Schmidt K.
2010 A radiocarbon date from the wall plaster of Enclosure D of Göbekli Tepe. Neo-Lithics 2/10: 82-83.

Dietrich O., Heun M., Notroff J., Schmidt K., and Zarnkow M.

Hauptmann H.

Kromer B. and Schmidt K.

Pustovoytov K.
2002 14C Dating of Pedogenic Carbonate Coatings on Wall Stones at Göbekli Tepe (Southeastern Turkey). Neo-Lithics 2/02: 3-4.

Pustovoytov K. and Taubald H.
2003 Stable Carbon and Oxygen Isotope Composition of Pedogenic Carbonate at Göbekli Tepe (Southeastern Turkey) and its Potential for Reconstructing Late Quaternary Paleoenvironments in Upper Mesopotamia. Neo-Lithics 2/03: 25-32.

Pustovoytov K., Schmidt K., and Parzinger H.
2007 Evidence for Holocene environmental changes in the northern Fertile Crescent provided by pedogenic carbonate coatings. Quaternary Research 67: 315-327.

Schirmer W.

Zazzo A. and Saliège J.-F.
forthcoming by Oxbow Books:

The Later Prehistory of the Badia. Excavations and Surveys in Eastern Jordan

by A.V.G. Betts and D. Cropper, L. Martin and C. McCartney

Levant Supplementary Series 11
Oxbow Books, Oxford and Oakville

Contents
Lists of figures, tables and plates
Abstract
Preface
Background and Methodology, by A. Betts, L. Martin and C. McCartney
Late Neolithic Sites in the Harra, by A. Betts, L. Cooke, A. Garrard, C. McCartney and D. Reese
Prehistoric Sites at Burqu’, by A. Betts, L. Martin, F. Matsaert and C. McCartney
Excavations at Mahfour al-Ruweishid, by A. Betts, C. McCartney, H. Pessin and G. Willcox
Excavations at Tell al-Hibr, by A. Betts and L. Martin
Area Survey in the Hamad, by A. Betts, D. Cropper and W. and F. Lancaster
The Eastern Badia, by A. Betts and D. Cropper
Bibliography
Index

From the volume’s abstract:

This is the second of two volumes to document extensive surveys and excavations in the region from Al-Azraq to the Iraqi border over the period 1979–1996. Broadly, it covers the Late Neolithic and Chalcolithic of the eastern badia, including surveys in the harra, excavations at a number of sites at Burqu’ and extensive surveys of sites of all periods in the eastern hamad. The rich prehistoric record preserved in the east Jordanian badia was first brought to the attention of western scholars through casual discoveries by RAF pilots flying along the old air route to Baghdad, and through surveys carried out by Henry Field in the period from 1925 to 1950. The region then remained unstudied until the 1970s, when Garrard and Stanley-Price undertook further survey work in the Azraq Oasis. This was followed by the surveys and excavations documented in this series.

published by ex oriente:

Neolithic Archaeology in the Khabur Valley, Upper Mesopotamia and Beyond
edited by
Yoshihiro Nishiaki, Kaoru Kashima and Marc Verhoeven

Contents
Preface, by Y. Nishiaki, K. Kashima and M. Verhoeven
Introduction, by Y. Nishiaki
Habitat, economy and social territories in the Neolithic, by F. Hole

Part 1 Prehistoric Environment of Upper Mesopotamia
Geological and geomorphological features of the upper drainage areas of Euphrates and Tigris, by H. Yüğitbaşoğlu
Fluvial surfaces along the Khabur River near Tell Seker al-Aheimar and their palaeoenvironmental implications, by T. Oguchi, K. Hori, T. Watanuki, C.T. Oguchi, J. Komatsubara, Y. Hayakawa and M.K. Jaiswal
Climatic events during the Neolithic in central Turkey and northern Syria, by K. Kashima and K. Hirose

Part 2 Neolithic Archaeology of the Khabur Basin
PPNB flint blade production at Tell Seker al-Aheimar, Upper Khabur, Syria, by Y. Nishiaki
Gypsum plaster manufacturing in northeast Syria: An ethnographic case study, by S. Kume
Neolithic pottery from the Khabur basin: A reassessment in the light of recent discoveries, by M. Le Mière
The Proto-Hassuna culture in the Khabur headwaters: A western neighbour’s view, by O. Nieuwenhuise

Part 3 Neolithic Archaeology in Upper Mesopotamia and Beyond
Outside the body, inside the mind: Interpreting Neolithic landscapes of the Syrian Jezirah, by M. Verhoeven
Recent progress in the Neolithic investigations of the Anatolian Tigris Valley, by Y. Miyake
Another image of complexity: The case of Tell el-Kerkh, by A. Tsuneki
Neolithic pottery in the northern Levant and its relations to the east, by T. Odaka
The Jeziran Neolithic “market”, by S. Kazłowski
published by ex oriente:

Neolithisation of Northeastern Africa

edited by

Noriyuki Shirai

Orders can be placed at www.exoriente.org/bookshop.

Contents

What makes the Neolithic in northeastern Africa? A new debate over an old issue for eliminating neighbourly ignorance, by N. Shirai

An appraisal of the terms ‘Neolithic’ and ‘Neolithisation’ for use in North Africa in the 21st century, by A.B. Smith

Reconsidering the ‘Mesolithic’ and ‘Neolithic’ in Sudan, by A.M. Sadig

Continuity, change and material memory: Taking a temporal perspective on the Neolithisation in Northeastern Africa, by A. Dittrich

Early Holocene palaeoclimate in North Africa: An overview, by A. Zerboni

Why are there very few archaeological sites of the Early Holocene in the Egyptian Nile Valley? Geological and geomorphological reasons, by M. Pawlikowski

Early stock keeping in northeastern Africa: Near Eastern influences and local developments, by V. Linseele

Modelling cereal selection in Neolithic Egypt: An evaluation of economic criteria, by R.T.J. Cappers

Unraveling the prehistoric ancestry of the present-day inhabitants of Northeast Africa: An archaeogenetic approach to Neolithisation, by A.C. Smith

Was a transition to food production homogeneous along the circum-Mediterranean littoral? A perspective on Neolithisation research from the Libyan coast, by G. Lucarini

Whence the Neolithic of Northeastern Africa? Evidence from the Central Western Desert of Egypt, by M.M.A. McDonald

Rock art in Egypt: Visual communication in the Eastern Desert in the Early to Mid-Holocene, by R. Döhl

Was Neolithisation a struggle for existence and the survival of the fittest, or merely the survival of the luckiest? A case study of socioeconomic and cultural changes in Egypt in the Early-Middle Holocene, by N. Shirai

Nile Valley-Levant interactions: An eclectic review, by O. Bar-Yosef

The Neolithisation of Northeastern Africa: Reflections on knowns, unknowns, and unknown unknowns, by G. Barker

in press by ex oriente:

‘Ain Ghazal Excavation Reports 3: Symbols at ‘Ain Ghazal,

edited by Denise Schmandt-Besserat

bibliotheca neolithica Asiae meridionalis et occidentalis (2013)

&

Yarmouk University, Monograph of the Faculty of Archaeology and Anthropology (2013)

13 contributions, XVI + 368 pages, 139 figures (including 5 colour illustrations), 38 plates, 3 tables. hardcover [ISBN 978-3-944178-03-5] (114 Euro)

Orders can be placed at www.exoriente.org/bookshop.

Contents

Chapter 1. INTRODUCTION
G.O. Rollefson and Z.A. Kafafi The Town of ‘Ain Ghazal

Chapter 2. TOKENS
2.1 H. Iceland Token Finds at Pre-Pottery Neolithic ‘Ain Ghazal. A Formal and Technological Analysis
2.2 D. Schmandt-Besserat Tokens and Writing: The Cognitive Development

Chapter 3. ANIMAL FIGURINES
D. Schmandt-Besserat Animal Figurines

Chapter 4. HUMAN FIGURINES
D. Schmandt-Besserat The Human Clay Figurines and Ancient Near Eastern Magic

Chapter 5. STONE STATUETTE
D. Schmandt-Besserat A Stone Metaphor of Creation

Chapter 6. MODELED AND DECORATED HUMAN SKULLS
6.1 C.A. Grissom and Patricia S. Griffin Three Plaster Faces
6.2 D. Schmandt-Besserat The Plastered Skulls

Chapter 7. THE STATUARY
7.1 C.A. Grissom Statue Cache 2
7.2 D. Schmandt-Besserat ‘Ain Ghazal “Monumental” Figures: A Stylistic Analysis

Chapter 8. PAINTINGS
D. Schmandt-Besserat Murals and Floor Paintings at ‘Ain Ghazal

Chapter 9. STANDING STONES
Z.A. Kafafi Standing Stones of the Neolithic Village of ‘Ain Ghazal

Chapter 10. CONCLUSION
D. Schmandt-Besserat Neolithic Symbolism at ‘Ain Ghazal